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Abstract

Brain MRI Segmentation is a challenging task partly due to severe class imbalance
and large number of segments. Previous work tackled the class imbalance issue
by using weighted cross entropy or weighted dice loss. In this work, we show
that only using a fixed loss function for the entire training period is not an optimal
strategy, and propose a novel and simple scheduling method for loss function
optimization, that leads to more robust and optimal segmentation model. Using
this technique, we show that a standard U-Net architecture is able to surpass the
more sophisticated state-of-the-art QuickNAT architecture when tested on MICCAI
Multi-Atlas Labeling challenge data set under the similar conditions. We also
compare our results to the widely used tool, Freesurfer, and show that our method
provides systematically superior results.

1 Introduction

Anatomical brain segmentation is an important task for almost all the neuroimaging analysis. Tradi-
tional and widely used software, Freesurfer [1], require hours [8] to perform the segmentation task for
each brain scan, which in turn restricts its usability in the clinic. Similarly, non-deep learning based
models like STAPLE[12] and PICSL[11] also takes hours to perform the inference task. Therefore,
deep learning based models can be used to achieve massive performance gains in terms of speed
and accuracy. The current state-of-the-art deep learning model for the brain MRI segmentation
is QuickNAT[8], which combines results of three views (axial, sagittal and coronal) to perform
segmentation on brain volume. QuickNAT is a U-Net [7] style architecture with four dense blocks
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used for encoding and four dense blocks used for decoding. The encoding and decoding blocks are
connected using skip connections.

All the existing deep learning models for segmentation use a fixed loss function while training their
network. We showcase that using different loss functions at different stage of training can lead the
model to a better generalization performance. We term this procedure of training the network as loss
scheduling.

2 Scheduling of Weighted Cross Entropy and Weighted Dice Loss

In segmentation task, the dice score is often the metric of importance. A loss function that directly
correlates with the dice score is the weighted dice loss. But often the network trained with only
weighted dice loss gets stuck in a local optima and doesn’t converge at all. In addition, empirically
it is seen that the stability of model in terms of convergence decreases as the number of classes
increases. An alternative loss function is weighted cross-entropy (w-cel), with the drawback that it is
sensitive to the class weights and often suffers from a problem of over prediction for some classes
and under prediction for other classes [2]. Therefore, a linear combination of the two loss functions
is often considered as the best practice [8] [10][9].

Intuitively, the combination of loss function is still sub-optimal as there is a component of w-cel loss
which is very sensitive to the class weights which are usually calculated heuristically[2]. Therefore,
we propose to gradually change the loss function from w-cel to w-dice loss as the training advances.
This will ensure that once the model reaches a local optima using the w-cel, the w-dice loss can
help the model to reach a better minima which helps to maximize the dice score. This hypothesis
was validated using a U-Net[7] which was trained on MRIs of 20 healthy patients from Human
Connectome Project (HCP)[4]. For this stage, the Freesurfer segmentation results processed by HCP
were used as auxiliary ground truth.

3 Experiments and Results

3.1 Datasets

Two datasets were used during the experiment, Human Connectome Project Dataset [4] and MICCAI
Multi-Atlas Labeling challenge data set [6]. The MRI volumes from first data set are 3D MPRAGE
images acquired at multiple sites using 3T Connectome Skyra scanners (FOV = 224mm x 224mm,
resolution = 0.7mm isotropic, TR/TE = 2400/2.14 ms, bandwidth = 210 Hz/pixel). Each MRI volume
has a dimension of 256 × 256 × 256. For training the U-Net, a 2-D axial slice of the MRI volume is
used as the input. Freesurfer segmentation results processed by HCP were used as auxiliary ground
truth for pre-training the models. MICCAI data set contains T1 MRI from 30 healthy patients with 15
patients in the train set and 15 patients in the testing set. Each MRI volume is manually segmented,
and is of the dimension 256 × 256 × ≥ 256. Last dimension is along the sagittal direction. We use
the training set to fine-tune the pre-trained models.

3.2 Implementation Details

The segmentation model architecture is a standard U-Net [7] as described in the original paper with
only difference being the input image size is 256 × 256 and output image size being 256 × 256 × 28
(number of classes + one for None). All the parameters of the U-net were initialized using Xavier
initialization[5].

For all the models, the class weights were calculated based on median frequency balancing method[3].
The model that was trained using only the w-dice Loss did not converge. As seen in Figure 1, the
model reached a better optima after switching from a combination of w-cel and w-dice loss to pure
w-dice loss. We also confirmed the performance gain was significant by testing our trained model
on MICCAI Multi-Atlas Labeling challenge test set[6]. As it can be seen in Table 1, the pre-trained
performance of the model trained using loss scheduling is better than all other models including the
state-of-art QuickNAT2 model which has much more complex architecture as compared to the vanilla

2U-Net is compared to the pretrained performance of QuickNAT because the U-Net and QuickNAT both are
trained on MRI of healthy patients with Freesurfer labels as the ground truth and tested on MICCAI test data set
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Figure 1: Plot showing average dice vs epoch for different training procedures

Table 1: Performance on MICCAI test data. Pre-Trained refers to results when training on auxiliary
(Freesurfer) labels, and Fine-Tuned refers to results of fine-tuned model on MICCAI training set.

Models

Name Loss Function Pre-Trained Fine-Tuned

U-Net Fixed (w-Dice Loss) Did not converge
U-Net Fixed (w-Cel) 0.7602 ± 0.085
U-Net Fixed (w-Cel + w-dice loss) 0.7819 ± 0.072
U-Net Loss scheduling 0.8049 ± 0.067 0.885 ± 0.042
QuickNAT Fixed (w-Cel + dice loss + Boundary Loss) 0.798 ± 0.097 0.901 ± 0.045
U-Net Fixed (w-Cel + dice loss + Boundary Loss) 0.681 ± 0.193 0.857 ± 0.079

U-Net. Moreover, QuickNAT was pre-trained on 581 healthy patients with Freesurfer segmentation
as the auxiliary ground truth while the U-Net model was pretrained on only 20 healthy patients.
Hence, it can be seen that an appropriate loss function and training methodology is as important as
the architecture of the model.

4 Systematic Bias in Freesurfer Labels

For the purpose of understanding the systematic biases of Freesurfer and also to improve model’s
performance on the test data, we fine tuned the U-Net model using the MICCAI training set. Although
the performance of the fine-tuned U-Net model (trained using loss scheduling) is not as good as
fine-tuned QuickNAT, it performs better than the fine-tuned U-Net model trained with fixed loss
function.

As seen in Table 1, the pre-trained U-Net model which was trained using Freesurfer labels doesn’t
perform as well as the model which was fine-tuned using the manual segmentation labels. This
indicates an inherent bias in how the Freesurfer segments the MRI. Hence, we were interested to
know the segments for which the difference of performance between pre-trained and fine-tuned
model is significant. As it can be seen from Figure 2, there is a considerable difference in the

Figure 2: Box-Plot showing the difference in the Dice scores of Pre-trained U-Net (Red) and
Fine-Tuned U-Net (Blue) for all the segments on the test data set of MICCAI challenge
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performance for all the segments. But, particularly for segments like Left-Pallidum, Left-Amygdala,
Left-Lat-Ventricle and Right-Lat-Ventricle, the difference in the performance is very large suggesting
that Freesurfer has some systematic biases while labelling the above-mentioned segments.

5 Conclusion

In this work, we show that with an appropriate loss function and a training methodology, a simple
model architecture can outperform the state-of-the-art architecture for segmenting the imbalanced
and diverse segments under similar conditions. The simple and yet effective techniques demonstrated
in this study can be used for training of any segmentation model. We also showed that a wildly
used tool, Freesurfer, has systematic biases for some segments and our method can have superior
performance which overcomes the systematic biases of Freesurfer labels. As future work, we plan to
improve the performance on larger manually segmented data, open source and release our tool, and
evaluate impact of loss scheduling on other applications and other publicly available data sets.
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