
Predicting Bank Marketing Campaign Success using
Machine Learning

Chaitra Hegde Aakash Kaku Neelang Parghi

Abstract—Data from a marketing campaign run by Banco
de Portugal is examined. The campaign’s aim was to increase
customers’ subscription rates to fixed-term deposit products,
such as CDs. Using knowledge from the course, a number of
machine learning algorithms are implemented to answer the
question: How can banks successfully market these products in
the most efficient way possible and with the highest possible rate
of success?

I. INTRODUCTION

With the startling rise over the last few decades of media
and technology which increases the amount of information
we have at our fingertips (cell phones, television, Internet,
etc.), humans are now more connected than ever. One result
of this is that marketing campaigns are growing evermore
pervasive in our daily lives. This glut of advertising has forced
businesses to compete for the attention of a populace that
has an ever growing amount of distractions. Thus raising
the question: How can businesses successfully advertise their
products in the most efficient way possible with the highest
possible rate of success? We will answer this question in the
context of banks advertising fixed term deposit products to
their customers. Using data collected from a previous bank
marketing campaign, a number of features centered around
the clients, the campaign itself, and general market conditions
will be explored. Based on this data, machine learning models
will predict which clients will subscribe and what banks can
do to increase the rate of subscription.

II. METHODOLOGY

A. Programming in Python

Python provides a number of packages and libraries for
the convenience of the programmer. The whole project is
coded using Python 3. Packages/libraries used are numpy
for array manipulation, pandas for dataframe operations, and
matplotlib and seaborn for visualization. The sklearn libraries
were also critical in providing packages for machine learning
algorithms, tasks, and by giving the user the control to set
important attributes of those algorithms as they wished. The
dataset is stored in a dataframe and is intensively queried
and manipulated using facilities provided by the Python 3
environment. Other data structures such as arrays, lists, and
dictionaries are used as needed[1].

B. Data cleaning and exploratory analysis

The dataset was provided by the U. C. Irvine Machine
Learning Repository and contained information on 41,188

clients across 20 different features, both categorial (marital
status, job type, education, etc.) and numeric (age, number
of days since previous contact, etc.). The target variable is
a binary “Yes” (client subscribed) or “No” (client did not
subscribe).

The first step is to load the dataset into a dataframe for easy
manipulation and exploration using the pandas package. The
‘duration’ feature was dropped due to the risk of data leakage.
This feature measures the length of the phone call between the
bank’s marketing representative and the customer. Since this
time cannot be known until after the call has ended (when the
outcome for that customer is already known), including it in
a predictive model would not provide realistic results.

The next step was to explore and clean the categorical
variables such as ‘job type,’ ‘marital status,’ ‘education,’ etc.
Plots for each were produced that looked at their relative
frequency as well as normalized relative frequency. In Python,
these graphs are created using the seaborn package.

Many of these features contain unknown values so the
next question is how to deal with this missing data. Simply
discarding these rows would lead to a huge reduction in the
amount of data and thus greatly interfere with the results.
Instead, these missing values are imputed using other inde-
pendent variables to infer the missing values. While this does
not guarantee that all the missing data will be restored, a
majority of it will be. For instance, cross-tabulation between
‘job’ and ‘education’ was used based on the hypothesis that
a person’s job will be influenced by their education. Thus,
a person’s job is used to predict their education level. The
Python function cross tab was created for this cross-tabulation
step. A similar cross-tabulation process was carried out for the
‘house ownership’ and ‘loan status’ features. It’s important
to note that in making these imputations, care was taken to
ensure the correlations made sense in the real world. If not, the
values were not replaced. Throughout this process, dataframes
using the pandas package were invaluable. Python provides
quickness, ease of modifiability and ease of replacement of
values throughout the dataset thanks to this tool.

The next task is to deal with missing data among the
numerical features. In this particular dataset, all missing values
were encoded as ‘999.’ It’s quickly noted that while only
the ‘pdays’ (number of days since that customer had been
contacted from the previous campaign) column contained such
values, they made up the majority of the data for this feature.
In other words, this column was missing more data than it
contained. Further exploration showed that this missingness



was due to customers who had not been contacted previously
at all. To deal with this, the numerical feature ‘pdays’ was
replaced with a categorical feature based on whether the
customer had never been contacted, contacted 5 or less days
ago, 6-15 days ago, etc.

Finally, a heatmap was created to show us whether there
is strong correlation between the target variable and any
independent variables. The heatmap is created using Spear-
man correlation, which measures the degree to which the
rankings of each variable (as opposed to the actual values)
align, thus minimizing the effect of outliers[2]. Once this
is measured, those variables are expected to be significant
during the modeling stage. This graphic was created using
Python’s seaborn package and the specially written function
drawheatmap, which takes a dataframe as an input. The code
for this function can be seen in the Jupyter notebook for this
project.

Fig. 1. Spearman correlation heatmap of rankings for each variable

For performing predictive analysis, many well known ma-
chine learning models should be fit on training data to learn
parameters of the model and then they can be run on test set
to get the prediction. Models used in our project are discussed
below.

C. Model Building

The dataset is divided into training data and test data
with the intention of using the training data to find the
parameters of the particular model being used (fitting the
model on the training data) and then applying this to the
test data to determine the model’s performance and to draw
conclusions about its predictive capability. This can be done

with a sklearn.cross validation.train test split function
call by specifying split ratio.

Logistic Regression: Python provides the package
sklearn.linear model.LogisticRegression for Logistic
Regression. LR a is well known classification model.
The linear model fits the training data to the equation
y = w0 + w1x1 + w2x2 + . . . (where y stands for the target
variable, w0 stands for the y intercept, x1, x2, x3, . . . are
feature vectors, and w1, w2, w3, . . . are their corresponding
weights) while the logistic regression algorithm uses the
same decision boundary with bit modifications as shown:
P (X) = 1

1+e−y .
Logistic regression is used because classification is not

exactly a linear function and using linear regression produces
an output within [−∞,+∞] while the probability has to
be within [0, 1]. The logistic function itself does output the
probability of an instance belonging to the positive class. This
output probability does indeed have a range of [0, 1], hence
overcoming the drawbacks of classification using a linear
model.

Decision Trees: Python provides the package
sklearn.tree.DecisionTreeClassifier for the decision tree
classifier. Decision trees are a simple yet effective method for
classification. Using a tree structure, this algorithm splits the
data set based on one feature at every node until all the data
in the leaf belongs to the same class. The criterion used for
splitting is called information gain, which is based on a purity
measure called entropy, a measure of disorder. The set with
the highest impurity will have higher entropy whereas the set
which has higher purity will have lower entropy. Information
gain measures the change in entropy due to the amount of
information added. The higher the information gain, the more
information that feature provides about the target variable.

By default, the decision tree grows deep and complex until
every leaf is pure and hence it is prone to overfitting.

Random Forest: Python provides the package
Sklearn.ensemble.RandomForestClassifier for the Random
Forest classifier. Random forest classifiers are one of the
ensemble learning methods for classification. It constructs
multiple decision trees (a “forest”) at the training time and
the output prediction is the class which is the mode of the
predictions made by the individual decision trees in the
ensemble.

Formally, we can write this as Crf(x) =
Majority vote Cb(x)

B
1 where Cb(X) is the class prediction

of the bth decision tree.
In this method, the individual trees are intentionally overfit

and the validation set is used to optimize tree level parameters.
Adaptive Boosting (AdaBoost): Python provides the

sklearn.ensemble.AdaBoostClassifier package for AdaBoost
classification. This is one of the most famous ensemble models
that can be used for classification as well as regression. The
idea here is to use a weak learning method several times to get
a succession of hypotheses. The weak learner method here is
decision trees with a single split. Here, those instances which
are difficult to classify receive increasingly larger weights until



the algorithm identifies the model that correctly classifies it.
Predictions are made by a majority vote of the weak learners’
predictions, weighted by their individual accuracy.

Gradient Boosting: Python provides the
sklearn.ensemble.GradientBoostingClassifier package for
Gradient Boosting classification. The Gradient Boosting
model is a generalized version of AdaBoost. The objective is
to minimize the loss of the model by adding weak learners
using a gradient descent-like procedure. One new weak
learner is added at a time and existing weak learners in the
model are frozen and left unchanged.

D. Model Evaluation

For evaluating all the models built, AUC score is used. This
is chosen as the scoring metric because it has been established
that for cases where classes are unbalanced (such as this),
AUC score is a better evaluation criterion than the accuracy
score. For each model, five-fold cross-validation is performed
over the training set. The kfold function from sklearn was used
extensively for this step. The mean AUC score is calculated for
each set of selected parameters. The final model (and hyper-
parameters) are selected based on the highest out-of-sample
mean AUC score.

E. Hyper-parameter Tuning

For all each model implemented, the hyper-parameters were
tuned to obtain the optimal performance of the classifier.

Logistic Regression: For Logistic Regression, two hyper-
parameters were tuned: the penalty type (‘L1’ or ‘L2’ penalty)
and the regularization coefficient (‘C’: 10−4 to 105 on the log
scale). Below is the graph of mean AUC vs. C for the different
penalty types. From the figure, it is clear that the classifier is
quite robust to the C values and the penalty type. We obtain
a maximum mean AUC of 0.7903 for C = 0.1 and penalty
= ‘L1’. This graph was created using Python’s matplotlib
package and a function we created called plot mean auc LR
which can be seen in the accompanying Jupyter notebook.

Fig. 2. Hyper-parameter tuning for Logistic Regression

Decision Trees, Random Forest Classifier and Gradient
Boosted Trees: For Decision Trees, Random Forest, and
Gradient Boosted Trees, two hyper-parameters were tuned:
minimum samples split (the minimum number of samples
required to split an internal node) and minimum samples leaf

(the minimum number of samples required to be at a leaf
node). These two parameters help control the depth of the
trees and thus help to control the model’s complexity. Below
are the graphs of mean AUC vs. leaf values for different split
values. From the figures, it is clear that the classifiers were
sensitive to the hyper-parameter chosen. These figures were
created using matplotlib and the function plotAUCDTRF in
the Jupyter notebook.

Fig. 3. Hyper-parameter tuning for Decision Trees

Fig. 4. Hyper-parameter tuning for Random Forest Classifier

Fig. 5. Hyper-parameter tuning for Gradient Boosted Trees



Hyper-Parameter Tuning of Trees
Model Best

Leaf
Value

Best
Split
Value

Mean
AUC

Decision Tree Clas-
sifier

132 1110 0.7919

Random Forest Clas-
sifier

7 189 0.7979

Gradient Boosted
Trees

37 85 0.8006

In the table, the best tree based models are summarized
with the hyper-parameters and the AUC score obtained for
the same.

AdaBoost Classifier: For the Ada-Boost classifier, only one
hyper-parameter is tuned: the number of estimators. The higher
the number of estimators, the more complex the model and
the higher the chance of overfitting becomes. In Figure 6,
we see a graph of mean AUC vs. number of estimators. As
before, this graph was created with matplotlib and the function
plot mean auc Ada Boost. From the figure, it is clear that the
classifier is pretty sensitive to the estimator values. We obtain
the maximum mean AUC of 0.8157 for nestimators = 1000.

Fig. 6. Hyper-parameter tuning for Ada-Boosting Classifier

III. RESULTS

From the above results, the best out of sample model
performance was obtained for the AdaBoost Classifier with
nestimators = 1000. On the test data, the best AUC score
achieved was 0.8036.

The importance of the features (in terms of how greatly they
affected the coefficients) was also plotted. This provides valu-
able insight toward understanding which features contribute
the most toward the models’ performance.

From the feature importance plot, it can be inferred that
Europe’s Libor rate, age of the applicant, employment vari-
ation rate, campaign, consumer confidence index, consumer
price index, mode of contact (= telephone), and number
of employees are some of the most important features in
predicting the outcome. The below graph was created using
the seaborn package and the function plotfeatureimportances.

A. Discussion

Based on the feature importance plot, some recommenda-
tions can be made to the bank’s marketing team:

Fig. 7. Most important Features based on the AdaBoost model

• The marketing team should collaborate with economic ex-
perts so that as soon as they have some signals indicating
the Libor going up (or the economic situation improving,
i.e., consumer price index or consumer confidence index
goes up), they can expect more customers to subscribe
for the term deposit and should pro-actively reach out to
them before the bank’s competitors do.

• The marketing team should target relatively old age
customers who would be looking for safe and profitable
investment options. The marketers should ensure to con-
vey the peace of mind and steady source of income
these products provide as a value proposition to these
customers.

• Although the ‘duration’ (length of marketing phone call)
variable was not used in the prediction models for various
reasons cited earlier, the correlation of the ‘duration’
variable with the target variable shows that the higher
the duration, the more likely it is that the customer
will subscribe to the term deposits (correlation = 0.405).
This makes intuitive sense because longer duration shows
that the customer is interested in the product. Hence,
the marketers should try to make the call engaging and
increase the duration of the call.

• The telephone seems to be the most preferred mode of
communication.

• The marketing team should prioritize those customers
to whom they previously reached out during previous
campaigns. They are likely to subscribe for the term
deposit.

IV. CONCLUSION

From this project, we learned how banks can improve
their marketing campaigns by focusing their efforts on certain
prime-grade clients and also how they can recognize market
conditions which are favorable to increase client subscription
for the fixed-term products they are offering. All of this was
possible by implementing data science and machine learning
methods in Python. Tools such as dataframes, arrays, for loops,
etc. were all critical for the success of this project. A large
number of other tools and techniques from the Python for Data
Science course were used and these were invaluable for mak-
ing our analyses and predictions. This project demonstrated
how powerful Python can be for data science applications.

REFERENCES

[1] Foster Provost and Tom Fawcett, Data Science for Business. O’Reilly
Media, 2013.

[2] https://ababankmarketing.com/insights/network-effect-strong-ever/


